

FOR USE IN SUMMER 2025 AND NOVEMBER 2025

MATHEMATICS HIGHER TIER

ADDITIONAL FORMULAE

USED IN SUMMER 2022 NOVEMBER 2022 SUMMER 2023 NOVEMBER 2023 SUMMER 2024 and NOVEMBER 2024

Higher Tier

Perimeter, area and volume	Quadratic formula
Where a and b are the lengths of the parallel sides and h is their perpendicular separation:	The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$:
Area of a trapezium $=\frac{1}{2}(a+b)h$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Volume of a prism = area of cross section \times length	
Where r is the radius and d is the diameter:	
Circumference of a circle $= 2\pi r = \pi d$	
Area of a circle $= \pi r^2$	
Pythagoras' theorem and trigonometry	In any right-angled triangle where a , b and c are the length of the sides and c is the hypotenuse:
c	$a^2 + b^2 = c^2$
	In any right-angled triangle ABC where a, b and c are the length of the sides and c is the hypotenuse:
	$\sin A = \frac{a}{c}$ $\cos A = \frac{b}{c}$ $\tan A = \frac{a}{b}$
C	In any triangle ABC where a, b and c are the length of the sides:
b a	sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
	cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$
	Area of a triangle $=\frac{1}{2}ab\sin C$
Compound interest	Probability
Where P is the principal amount, r is the interest rate over a given period and n is number of times that the interest is compounded:	Where $P(A)$ is the probability of outcome A and $P(B)$ is the probability of outcome B :
	P(A or B) = P(A) + P(B) - P(A and B)
Total accrued = $P\left(1 + \frac{r}{100}\right)^n$	P(A and B) = P(A given B) P(B)